
Col Eric J. Felt, Director

Space Vehicles Directorate Air Force Research Laboratory

October 2020

21st Century Space

2nd Space Age Economic & National Interests

1969	Today	2030+
~1500 objects	~10 ⁴ objects; human-operated	~10 ⁶ objects, autonomous
GEO, Lunar, Keplerian	GEO, Keplerian	Cis-lunar, non-Keplerian
~7 nations in space	~90 nations; commercial	?? nations, commercial; non-state

Quegiao

AFRL Historical Perspective

We've Been Here Before

USAF created out of the United States Army Air Forces to address the growing role of the air domain

AFRL Rise of Air Forces in WWII

Challenges in Air Have Parallels to Space

Survivability

Distance

Communications

System Employment

Higher altitude & speed to avoid threats

Range from safe bases to strategic target

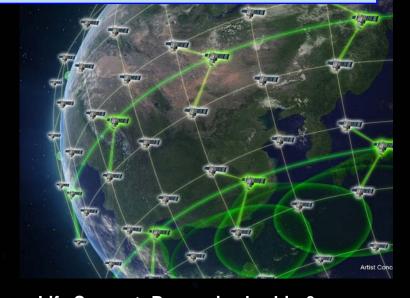
Flight dynamics & control

Domain effects on payload

Life Support: Pressurized cabin & oxygen


Propulsion and supercharged engines

Stabilized bombsight integrated with aircraft autopilot (and later radar)


Rise of Space Forces **AFRL**

Challenges in Air Have Parallels to Space

Achieving decisive, independent effects from space will also have many challenges, including technical

Earth (a) L2 southern halo family (b) L₁ and L₂ northern and southern NRHOs

Survivability

Distance

Communications

System Employment

Higher altitude & speed to avoid threats

Range from safe bases to strategic target

Flight dynamics and control

Domain effects on payload

Life Support: Pressurized cabin & oxygen **On-board autonomy** Propulsion and supercharged engines

Stabilized bombsight integrated with aircraft

autopilot (and later radar)

Space domain awareness integrated with autonomous decision making

AFRL AFRL/RV Mission Areas

Position, Navigation & Timing

- Reprogrammable signal generator
- Explore high gain antenna configurations
- Software defined receivers
- Enterprise Ground System compatible

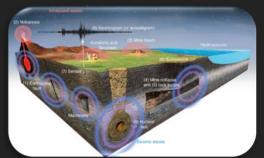
- Novel detectors, materials & algorithms
- Hyper-temporal imaging (HTI)
- Data processing and integration
- Infrared Radiation Effects Lab (IRREL)

- Wave impacts on radiation belt dynamics
- Map MEO radiation environment
- Characterize material degradation
- Specify, forecast, mitigate and exploit

Pervasive Technologies

- Power, structures, thermal, electronics
- Guidance and control systems
- Resilient, low SWaP-C components
- Ultra-compact, deployable structures

Satellite Communications


- Space combat cloud
- Protected satellite communication
- Wideband and narrowband comm
- Advanced user terminals

Space Control

- Local space situational awareness
- Unified Data Library open marketplace
- Low-cost satellite protection technology
- Space system cyber protection

Nuclear Deterrence Operations

- Advanced inertial navigation systems
- Nuclear Explosion Monitoring
- Hypersonic modelling and simulation
- Modernization Technologies

AFRL

Space Domain Awareness

Challenges from vLEO to XGEO

- Highly congested environment
- considered as part Advanced tools to ingest and combine, allied, commercial, & government data
 - Ground-based antisatellite threats

10,000 km

100,000 km

XGEO

1,000,000 km

MEO GEO

- Harsh radiation environment that is not well characterized
- Critical GPS services for national infrastructure

- Most USSF assets
- Increasingly congested
- Need advanced SDA techniques beyond dot-tracking
- New, vast regime
- Complex orbital dynamics
- "Cone of Shame" limits ground-based SDA
- Enabling potential lines of commerce

Altitudes only

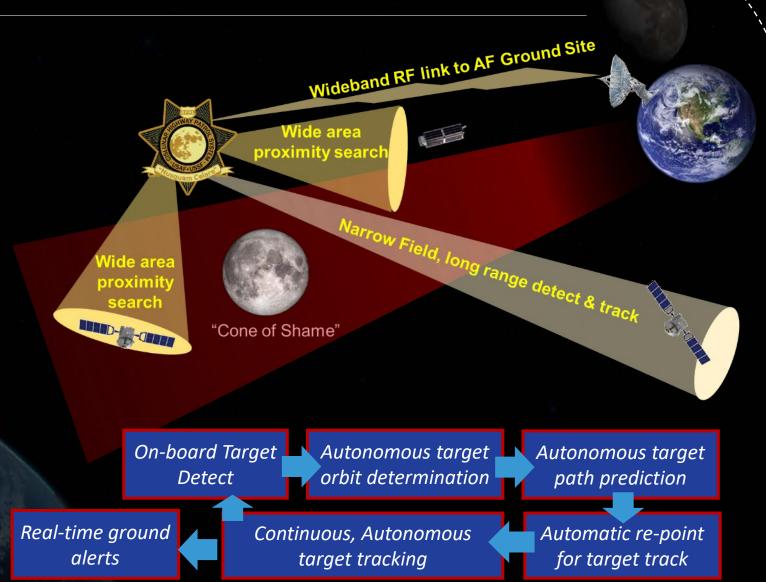
previously

of de-orbit

environment

Constant thrust

High drag


AFRL Cislunar Highway Patrol Systems (CHPS)

Objectives

- Find, fix, and track objects in lunar exclusion zone aka "Cone of Shame"
- Increase maturity of onboard SDA processing techniques
- Demo tip & cue with existing assets
- New techniques to perform orbit determination on cislunar objects
- Assess novel navigation techniques

Technical Challenge

- 3-body effects are chaotic
- Predicting trajectories
- Tradeoffs between infinite orbits and off-the-shelf sensors

AFRL

Micro-Satellite Military Utility

9-Nation Project Agreement

Inform a space enterprise that provides military users with reliable access to a broad spectrum of information in an opportunistic environment

RIMPAC 2018: Exploring military utility of heterogeneous satellite architecture

- Traditional government sensors
- Commercial sensors
- Small satellites
- Multiple phenomenologies
- Simulations of future satellites
- Mission planning and sensemaking tools

220 satellites including:

AISSat-1 & -2, BlackSky providers,

DigitalGlobe, Kestrel Eye, Maerospace

Corporation, NorSat-1 & -2, Planet's Dove Flock and SkySats, and RadarSat-2.

Key findings

- Value of the heterogeneous architecture tends towards lower-tempo uses such as pattern-of-life
- There are clear gaps in the architecture where coordinated government investment is needed

AFRL Accelerating S&T

Innovation Pipeline

THE AIR FORCE RESEARCH LABORATORY

Market Focused, Mission Aware

Objective: A collapsed acquisition process that couples accelerators for *concept exploration* with rapid prototyping & other gov't investments to reduce idea-2-ops timelines using non-traditional partners.

10

SMC Baseline/VC /Prime Investment

AFRL RV Prioritized Initiatives

- 1. Space Combat Cloud
- 2. Managing hybrid architectures
- 3. Low-cost satellite protection technologies
- 4. Autonomy, AI, and multi-agent collaboration
- 5. Space delivery (NASA small sample return)
- 6. Space cyber
- 7. LEO to cislunar space domain awareness
- 8. Modeling and simulation concept analysis for data-driven decision making
- 9. Space logistics, e.g. servicing/upgrade, assembly, and manufacturing
- 10. Space to surface sensing
- 11. Clean sheet command, control, and communications architecture
- 12. Space environment
- 13. Space-based terrestrial environmental monitoring

